Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
iScience ; 26(7): 107018, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37416475

RESUMO

The Sahara Desert, one of today's most inhospitable environments, has known periods of enhanced precipitation that supported pre-historic humans. However, the Green Sahara timing and moisture sources are not well known due to limited paleoclimate information. Here, we present a multi-proxy (δ18O, δ13C, Δ17O, and trace elements) speleothem-based climate record from Northwest (NW) Africa. Our data document two Green Sahara periods during Marine Isotope Stage (MIS) 5a and the Early to Mid-Holocene. Consistency with paleoclimate records across North Africa highlights the east-west geographical extent of the Green Sahara, whereas millennial-scale North Atlantic cooling (Heinrich) events consistently resulted in drier conditions. We demonstrate that an increase in westerly-originating winter precipitation during MIS5a resulted in favorable environmental conditions. The comparison of paleoclimate data with local archaeological sequences highlights the abrupt climate deterioration and the decline in human density in NW Africa during the MIS5-4 transition, which suggests climate-forced dispersals of populations, with possible implications for pathways into Eurasia.

2.
Nat Commun ; 13(1): 5867, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195764

RESUMO

Our understanding of climate dynamics during millennial-scale events is incomplete, partially due to the lack of their precise phase analyses under various boundary conditions. Here we present nine speleothem oxygen-isotope records from mid-to-low-latitude monsoon regimes with sub-centennial age precision and multi-annual resolution, spanning the Heinrich Stadial 2 (HS2) - a millennial-scale event that occurred at the Last Glacial Maximum. Our data suggests that the Greenland and Antarctic ice-core chronologies require +320- and +400-year adjustments, respectively, supported by extant volcanic evidence and radiocarbon ages. Our chronological framework shows a synchronous HS2 onset globally. Our records precisely characterize a centennial-scale abrupt "tropical atmospheric seesaw" superimposed on the conventional "bipolar seesaw" at the beginning of HS2, implying a unique response/feedback from low-latitude hydroclimate. Together with our observation of an early South American monsoon shift at the HS2 termination, we suggest a more active role of low-latitude hydroclimate dynamics underlying millennial events than previously thought.

3.
Clim Dyn ; 59(5-6): 1401-1414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971539

RESUMO

Extant climate observations suggest the dry season over large parts of the Amazon Basin has become longer and drier over recent decades. However, such possible intensification of the Amazon dry season and its underlying causes are still a matter of debate. Here we used oxygen isotope ratios in tree rings (δ18OTR) from six floodplain trees from the western Amazon to assess changes in past climate. Our analysis shows that δ18OTR of these trees is negatively related to inter-annual variability of precipitation during the dry season over large parts of the Amazon Basin, consistent with a Rayleigh rainout model. Furthermore δ18OTR increases by approximately 2‰ over the last four decades (~ 1970-2014) providing evidence of an Amazon drying trend independent from satellite and in situ rainfall observations. Using a Rayleigh rainout framework, we estimate basin-wide dry season rainfall to have decreased by up to 30%. The δ18OTR record further suggests such drying trend may not be unprecedented over the past 80 years. Analysis of δ18OTR with sea surface temperatures indicates a strong role of a warming Tropical North Atlantic Ocean in driving this long-term increase in δ18OTR and decrease in dry season rainfall. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-021-06046-7.

4.
Sci Rep ; 12(1): 10527, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732794

RESUMO

Tropical South American hydroclimate sustains the world's highest biodiversity and hundreds of millions of people. Whitin this region, Amazonia and northeastern Brazil have attracted much attention due to their high biological and social vulnerabilities to climate change (i.e. considered climate change hotspots). Still, their future response to climate change remains uncertain. On precession timescale, it has been suggested that periods of decreased western Amazonian precipitation were accompanied by increased northeastern Brazilian precipitation and vice-versa, setting an east-west tropical South American precipitation dipole. However, the very existence of this precession-driven precipitation dipole remains unsettled given the scarcity of long and appropriate northeastern Brazilian records. Here we show that the precession-driven South American precipitation dipole has persisted over the last 113 ka as revealed by a northern northeastern Brazilian precipitation record obtained from quartz thermoluminescence sensitivity measured in marine sediment cores. Precession-induced austral summer insolation changes drove the precipitation dipole through the interhemispheric temperature gradient control over the regional Walker circulation and the Intertropical Convergence Zone seasonal migration range. Since modern global warming affects the interhemispheric temperature gradient, our study provides insights about possible future tropical South American hydroclimate responses.


Assuntos
Mudança Climática , Chuva , Brasil , Humanos , Estações do Ano , Temperatura
5.
Nat Commun ; 13(1): 1349, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292642

RESUMO

Speleothems can provide high-quality continuous records of the direction and relative paleointensity of the geomagnetic field, combining high precision dating (with U-Th method) and rapid lock-in of their detrital magnetic particles during calcite precipitation. Paleomagnetic results for a mid-to-late Holocene stalagmite from Dona Benedita Cave in central Brazil encompass ~1900 years (3410 BP to 5310 BP, constrained by 12 U-Th ages) of paleomagnetic record from 58 samples (resolution of ~33 years). This dataset reveals angular variations of less than 0.06° yr-1 and a relatively steady paleointensity record (after calibration with geomagnetic field model) contrasting with the fast variations observed in younger speleothems from the same region under influence of the South Atlantic Anomaly. These results point to a quiescent period of the geomagnetic field during the mid-to-late Holocene in the area now comprised by the South Atlantic Anomaly, suggesting an intermittent or an absent behavior at the multi-millennial timescale.

6.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221339, 2022.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1383937

RESUMO

Abstract: We briefly describe selected results from our thematic project focused on the biodiversity of the Atlantic Forest ("AF BIOTA"), which was jointly funded by FAPESP's BIOTA Program, the U.S. National Science Foundation Dimensions of Biodiversity Program, and the National Aeronautics and Space Administration (NASA). As one of the five most important hotspots of biodiversity in the world, the Atlantic Forest (AF) holds less than 16% of its vegetation cover, yet, amongst the hotspots, it still harbors one of the highest numbers of species, including endemics. By gathering specialists across multiple disciplines (biology, geology, engineering), we aimed to understand how this megabiodiversity was built through time, informing biodiversity science and conservation. Among the results, we trained 18 Master's and 26 Ph.D. students, published more than 400 peer-reviewed papers that improved our knowledge about the forest's biologic and climatic diversity and dynamics through time, developed new analytical methods, produced outreach videos and articles, and provided data to help define biodiversity conservation policies.


Resumo: Descrevemos de forma resumida resultados selecionados do nosso projeto temático com foco na biodiversidade da Floresta Atlântica ("AF BIOTA"), que foi financiado pelo BIOTA FAPESP e pelo programa "Dimensions of Biodiversity" da "U.S. National Science Foundation" e "National Aeronautics and Space Administration" (NASA). Devido à sua megabiodiversidade (que inclui várias espécies endêmicas), e por restar menos de 16% da vegetação original, a Floresta Atlântica (FA) é uma das cinco áreas mais importantes para a biodiversidade do planeta ("biodiversity hotspot"). Reunimos especialistas de diversas disciplinas (biologia, geologia, engenharia) visando compreender como essa megabiodiversidade evoluiu ao longo do tempo e fornecer informações científicas para a sua conservação. Dentre os resultados obtidos, nós formamos 18 mestres e 26 doutores, publicamos mais de 400 artigos científicos que aumentaram o conhecimento sobre a diversidade biológica e climática da FA e sua dinâmica ao longo do tempo, desenvolvemos novos métodos analíticos, produzimos material de divulgação científica e fornecemos dados para desenvolver políticas públicas de conservação da biodiversidade.

7.
Nat Commun ; 11(1): 5447, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116129

RESUMO

Atmospheric circulation is a fundamental component of Earth's climate system, transporting energy poleward to partially offset the latitudinal imbalance in insolation. Changes in the latitudinal distribution of insolation thus force variations in atmospheric circulation, in turn altering regional hydroclimates. Here we demonstrate that regional hydroclimates controlled by the Northern Hemisphere mid-latitude storm tracks and the African and South American Monsoons changed synchronously during the last 10 kyrs. We argue that these regional hydroclimate variations are connected and reflect the adjustment of the atmospheric poleward energy transport to the evolving differential heating of the Northern and Southern Hemispheres. These results indicate that changes in latitudinal insolation gradients and associated variations in latitudinal temperature gradients exert important control on atmospheric circulation and regional hydroclimates. Since the current episode of global warming strongly affects latitudinal temperature gradients through Arctic amplification, our results can inform projections of likely inter-hemispheric precipitation changes in the future.

8.
Proc Natl Acad Sci U S A ; 117(38): 23408-23417, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900942

RESUMO

The Younger Dryas (YD), arguably the most widely studied millennial-scale extreme climate event, was characterized by diverse hydroclimate shifts globally and severe cooling at high northern latitudes that abruptly punctuated the warming trend from the last glacial to the present interglacial. To date, a precise understanding of its trigger, propagation, and termination remains elusive. Here, we present speleothem oxygen-isotope data that, in concert with other proxy records, allow us to quantify the timing of the YD onset and termination at an unprecedented subcentennial temporal precision across the North Atlantic, Asian Monsoon-Westerlies, and South American Monsoon regions. Our analysis suggests that the onsets of YD in the North Atlantic (12,870 ± 30 B.P.) and the Asian Monsoon-Westerlies region are essentially synchronous within a few decades and lead the onset in Antarctica, implying a north-to-south climate signal propagation via both atmospheric (decadal-time scale) and oceanic (centennial-time scale) processes, similar to the Dansgaard-Oeschger events during the last glacial period. In contrast, the YD termination may have started first in Antarctica at ∼11,900 B.P., or perhaps even earlier in the western tropical Pacific, followed by the North Atlantic between ∼11,700 ± 40 and 11,610 ± 40 B.P. These observations suggest that the initial YD termination might have originated in the Southern Hemisphere and/or the tropical Pacific, indicating a Southern Hemisphere/tropics to North Atlantic-Asian Monsoon-Westerlies directionality of climatic recovery.

10.
Sci Rep ; 9(1): 17912, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784587

RESUMO

The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex, Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal range of 30°S to 0°S. In addition, Principal Component Analysis and Species Distribution Modelling were used to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil and Amazonia with a third short route extending from one of them. Their paleofloristic compositions suggest a climatic scenario of abundant rainfall and relative lower continental surface temperatures, possibly intensified by the effects of polar air incursions forming cold fronts into the Brazilian Highlands. Although these taxa are sensitive to changes in temperature, the combined pollen and speleothems proxy data indicate that this montane rainforest expansion during Heinrich Stadial 1 Event was triggered mainly by a less seasonal rainfall regime from the subtropics to the equatorial region.

11.
Am J Phys Anthropol ; 169(2): 322-331, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30972753

RESUMO

OBJECTIVES: Platyrrhines constitute a diverse clade, with the modern Atelidae exhibiting the most variation in cranial and endocast morphology. The processes responsible for this diversification are not well understood. Here, we present a geometric morphometric study describing variation in cranial and endocranial shape of 14 species of Alouatta, Ateles, Brachyteles, and Lagothrix and two extinct taxa, Cartelles and Caipora. METHODS: We examined cranial and endocranial shape variation among species using images reconstructed from CT scans and geometric morphometric techniques based on three-dimensional landmarks and semilandmarks. Principal components analyses were used to explore variation, including the Procrustes shape coordinates, summing the logarithm of the Centroid Size, the common allometric component, and residual shape components. RESULTS: Differences in endocranial shape are related to a relative increase or decrease in the volume of the neocortex region with respect to brainstem and cerebellum regions. The relative position of the brainstem varies from a posterior position in Alouatta to a more ventral position in Ateles. The shape of both the cranium and endocast of Caipora is within the observed variation of Brachyteles. Cartelles occupies the most differentiated position relative to the extant taxa, especially in regards to its endocranial shape. CONCLUSIONS: The pattern of variation in the extant species in endocranial shape is similar to the variation observed in previous cranial studies, with Alouatta as an outlier. The similarities between Caipora and Brachyteles were unexpected and intriguing given the frugivorous adaptations inferred from the fossil's dentition. Our study shows the importance of considering both extant and fossil species when studying diversification of complex traits.


Assuntos
Atelidae/anatomia & histologia , Evolução Biológica , Encéfalo/anatomia & histologia , Crânio/anatomia & histologia , Animais , Antropologia Física , Atelidae/fisiologia , Encéfalo/fisiologia , Feminino , Fósseis , Masculino , Crânio/diagnóstico por imagem , Crânio/fisiologia , Tomografia Computadorizada por Raios X
12.
Sci Rep ; 9(1): 1698, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737460

RESUMO

Recent paleoclimatic studies suggest that changes in the tropical rainbelt across the Atlantic Ocean during the past two millennia are linked to a latitudinal shift of the Intertropical Convergence Zone (ITCZ) driven by the Northern Hemisphere (NH) climate. However, little is known regarding other potential drivers that can affect tropical Atlantic rainfall, mainly due to the scarcity of adequate and high-resolution records. In this study, we fill this gap by reconstructing precipitation changes in Northeastern Brazil during the last 2,300 years from a high-resolution lake record of hydrogen isotope compositions of plant waxes. We find that regional precipitation along the coastal area of South America was not solely governed by north-south displacements of the ITCZ due to changes in NH climate, but also by the contraction and expansion of the tropical rainbelt due to variations in sea surface temperature and southeast trade winds in the tropical South Atlantic Basin.

13.
Sci Rep ; 9(1): 20306, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889126

RESUMO

The South American Monsoon System is responsible for the majority of precipitation in the continent, especially over the Amazon and the tropical savannah, known as 'Cerrado'. Compared to the extensively studied subtropical and temperate regions the effect of the Medieval Climate Anomaly (MCA) on the precipitation over the tropics is still poorly understood. Here, we present a multiproxy paleoprecipitation reconstruction showing a consistent change in the hydrologic regime during the MCA in the eastern Amazon and 'Cerrado', characterized by a substantial transition from humid to drier conditions during the Early (925-1150 C.E.) to Late-MCA (1150-1350 C.E.). We compare the timing of major changes in the monsoon precipitation with the expansion and abandonment of settlements reported in the archeological record. Our results show that important cultural successions in the pre-Columbian Central Amazon, the transition from Paredão to Guarita phase, are in agreement with major changes in the hydrologic regime. Phases of expansion and, subsequent abandonment, of large settlements from Paredão during the Early to Late-MCA are coherent with a reduction in water supply. In this context we argue that the sustained drier conditions during the latter period may have triggered territorial disputes with Guarita leading to the Paredão demise.

14.
Proc Natl Acad Sci U S A ; 115(52): 13198-13203, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530675

RESUMO

The diminishing strength of the Earth's magnetic dipole over recent millennia is accompanied by the increasing prominence of the geomagnetic South Atlantic Anomaly (SAA), which spreads over the South Atlantic Ocean and South America. The longevity of this feature at millennial timescales is elusive because of the scarcity of continuous geomagnetic data for the region. Here, we report a unique geomagnetic record for the last ∼1500 y that combines the data of two well-dated stalagmites from Pau d'Alho cave, located close to the present-day minimum of the anomaly in central South America. Magnetic directions and relative paleointensity data for both stalagmites are generally consistent and agree with historical data from the last 500 y. Before 1500 CE, the data adhere to the geomagnetic model ARCH3K.1, which is derived solely from archeomagnetic data. Our observations indicate rapid directional variations (>0.1°/y) from approximately 860 to 960 CE and approximately 1450 to 1750 CE. A similar pattern of rapid directional variation observed from South Africa precedes the South American record by 224 ± 50 y. These results confirm that fast geomagnetic field variations linked to the SAA are a recurrent feature in the region. We develop synthetic models of reversed magnetic flux patches at the core-mantle boundary and calculate their expression at the Earth's surface. The models that qualitatively resemble the observational data involve westward (and southward) migration of midlatitude patches, combined with their expansion and intensification.

15.
Sci Rep ; 8(1): 17446, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487635

RESUMO

Here we present a new composite record from two well-dated speleothem records from two caves in Northern Morocco. The high-resolution record covers the last millennium allowing to detect multi-decadal to centennial periodicities. Over the industrial period, δ18O values of our speleothems are shown to be dominated by the main mode of decadal variability in the North Atlantic region: the North Atlantic Oscillation (NAO). Statistical analyses confirm the previously reported multi-decadal variability related to the influence of the Atlantic Multidecadal Oscillation (AMO) in the region. High power and persistent centennial-scale periodicities, similar to the Vries-Suess 200-year solar cycle, are observed as well. Indeed, comparison between solar activity reconstructions and our record confirms the in-phase relationship on centennial time-scales. Low δ18O values, and hence negative phases of NAO that bring precipitation towards the Western Mediterranean, are observed during well-known solar minima periods. The results are consistent with previous models which describe low irradiance as a  trigger for southward shifts of precipitation-bearing westerlies during winter.

16.
Proc Natl Acad Sci U S A ; 115(15): 3788-3793, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581293

RESUMO

Heinrich Stadials significantly affected tropical precipitation through changes in the interhemispheric temperature gradient as a result of abrupt cooling in the North Atlantic. Here, we focus on changes in South American monsoon precipitation during Heinrich Stadials using a suite of speleothem records covering the last 85 ky B.P. from eastern South America. We document the response of South American monsoon precipitation to episodes of extensive iceberg discharge, which is distinct from the response to the cooling episodes that precede the main phase of ice-rafted detritus deposition. Our results demonstrate that iceberg discharge in the western subtropical North Atlantic led to an abrupt increase in monsoon precipitation over eastern South America. Our findings of an enhanced Southern Hemisphere monsoon, coeval with the iceberg discharge into the North Atlantic, are consistent with the observed abrupt increase in atmospheric methane concentrations during Heinrich Stadials.


Assuntos
Tempestades Ciclônicas , Camada de Gelo/química , Clima , Isótopos de Oxigênio/análise , Água do Mar/química , América do Sul , Temperatura
17.
Sci Rep ; 7: 44267, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281650

RESUMO

The exact extent, by which the hydrologic cycle in the Neotropics was affected by external forcing during the last deglaciation, remains poorly understood. Here we present a new paleo-rainfall reconstruction based on high-resolution speleothem δ18O records from the core region of the South American Monsoon System (SAMS), documenting the changing hydrological conditions over tropical South America (SA), in particular during abrupt millennial-scale events. This new record provides the best-resolved and most accurately constrained geochronology of any proxy from South America for this time period, spanning from the Last Glacial Maximum (LGM) to the mid-Holocene.

18.
Nature ; 541(7636): 204-207, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28079075

RESUMO

Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin-one of Earth's major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.


Assuntos
Chuva , Clima Tropical , Atmosfera/química , Brasil , Carbonato de Cálcio/química , Dióxido de Carbono/análise , Cavernas , China , História Antiga , Camada de Gelo , Isótopos de Oxigênio , Transpiração Vegetal , Floresta Úmida , Estações do Ano , Temperatura , Água/metabolismo
19.
Sci Rep ; 6: 35866, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779213

RESUMO

Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.

20.
Sci Rep ; 6: 24762, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097590

RESUMO

The South American Monsoon System (SAMS) is generally considered to be highly sensitive to Northern Hemisphere (NH) temperature variations on multi-centennial timescales. The direct influence of solar forcing on moisture convergence in global monsoon systems on the other hand, while well explored in modeling studies, has hitherto not been documented in proxy data from the SAMS region. Hence little is known about the sensitivity of the SAMS to solar forcing over the past millennium and how it might compete or constructively interfere with NH temperature variations that occurred primarily in response to volcanic forcing. Here we present a new annually-resolved oxygen isotope record from a 1500-year long stalagmite recording past changes in precipitation in the hitherto unsampled core region of the SAMS. This record details how solar variability consistently modulated the strength of the SAMS on centennial time scales during the past 1500 years. Solar forcing, besides the previously recognized influence from NH temperature changes and associated Intertropical Convergence Zone (ITCZ) shifts, appears as a major driver affecting SAMS intensity at centennial time scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...